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We shall consider the motion of a viscous incompressible fluid in a 
flat-bottomed rectangular hole created by the motion of a plane (Fig. 
1). Introduction of the stream function reduces the Navier-Skokes equa- 
tions, as usual, to the equations 

where u and v are dimensionless velocity components, x, y, and t are 
dimen~onless arguments, and R is the Reynolds number. 

Fig. 1. R= 0, k~=2,  t =  0.2. 

It is assumed that the plane AH moves according to the law 

u = t - -  e -~3 (k 1 = const). 

The dimensional velocities vg and v~ and the arguments v, g, ~ are 
related by the dimensional equations 

u = - f f - ,  v = - ~ - ,  y = ~ ,  ~ = - - ~ ,  t = ~ -  ( U = c o n s t } .  

We solve equation (1) for the following initial and boundary condi- 
t.ions 

~) = ~/2 (t -- e -~'t) on BCDEFG 

O~/Oy= OonBC, DE andFG O~/O~= OonAB, CD, EFandGH 

= i/~ (l - -  e -~'t) y~ on AB and GH 

= O , o ~ I O y =  i - - e ' ~ ' t o n A H  ~ =  0 for t =  O. 

Thus we assume that 

u =  ( i - - e  -hI )y,  v =  0 on the l ines  A B a n d G H  

We reduce equation (1) to the system 

o 9 ' O~ O~ 0~ 09 

A - - ~  N 

| 

Fig. 2. R=0,  k i = 2 ,  t = 2 .  

We substitute finite-difference relations for the derivatives in sys- 

tem (2), and introduce an output-time grid (tn0 x i, Yk)' where t n = 
=n~t,  x i = i A x , y k  = k A y ( n = 0 ' l ' 2  . . . . .  i = 0 , 1 , 2  . . . . .  I ; k = 0 , 1 ,  
2 . . . . .  K). 

The resulting difference system is 

~+1 " - -  *~ -[ {pi' 1r 9 i ,  ~-I 9i+1 ,  ~ 9 i - 1 ,  k 

"-~ (a~) ~ (AVP - -  R ~ ~ 2ax - -  

. . . . . . .  , + ~ ~+~)  , .  ,2 - ~+~ + ~ ~ + , )  ( A ~ ) 2 _ _  
(V/+j, ~ Vi-~, }: ray) -# (~i, k+~ i, - 

9 n+i (Ax,2 ,h  .2 - 2 [ (a~ )  ~ + ( a y )  2 1 % , ~ t  = {. ~ ~ [ ~ 

We assume that at a certain moment t n, the values of the quanti- 
ties e i, ~ and n @i' k are known at each point of the grid region. Wi~+ 
the aid of formula (3) we determine the values of the quantities ~i, k 
at the internal points of the region. Then we determine the values of 
the quantity ~ ~ ~ by solving the difference analog (4) of the Poisson 
equation. The'boundary vaines of the quantities q [ ~ t  are determined 
from formulas first derived by A. Thorn [1]. For the wall y = 0, this 
formula has the form 

2 [~i, I n+1- (i - -  e - b  in+a) ay] 
0 n+l  

( A y )  2 

Analogous formulas can be obtained for the other boundaries by 
expanding the quantity ~i,~ t at a point near the boundary in a Taylor- 
series and using the seconcl equation of system (2) at the boundary. The 
calculations were performed for the following eases (all dimensions are 
referred to the channel width AB): 

A ~ H 

c 

D , ' [ 

Fig. 3. R = 500, k 1 = 2, t = 1.5. 

1. Motion of a fluid in a square cavRy AB = 1, BC = FG = 1, CD = 
= DE = 3 1/3 (Fig, 1). a) R = 0 (neglecting inertial terms). A flow pat- 
tern symmetrical with respect to the symmetry line of the cavity can be 
observed at any moment, but the flow pattern itself undergoes substantial 
changes with time. Streamlines that correspond to the flow at the vari- 
ous moments of t ime are given in Figs. 1 and 2. 

It can be seen that at the initial moments of time the streamlines 

are not closed and there is an exchange of fluid over the entire voinme 
of the cavity with the external flow (Fig. 1). With increasing time, a 
region of reverse flow appears at the cavity walls, which gradually ex- 
tends over the entire cavity (Fig. 2). 

b) R = 10O. The motion at the initial moments, for R = 100, is 
similar to that at R = 0. However, the onset of reverse currents takes 
place primarily at the left wall when the moving plane moves m the 
right. The flow develops nonsymmetrically and the core of the second- 
ary flow is displaced to the right. 

c) R = 500. The flow pattern scarcely differs qualitatively from 
that at R = 100. A corner vortex can be seen in the developed flow 
(Fig. 3). 
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2. Motion of a fluid in a deep cav i t y  A B = I ,  BC =FG = 1, CD = 
= ~ 2/3,  DE = 3 1/3.  a) R = 100. During the  i n i t i a i  momen t s  (up to 

t = 0 .2  for k = 2) a l l  the  fluid moves  in one d i rec t ion  (as in  Fig. 1 for 
a square cavi ty) .  Two regions of  reverse f low gradua l ly  develop,  form- 

ing the  s t eady-s t a t e  pat tern  (Fig. 4). 
b) R = 500. The flow develops  l i k e  that  at  R = 100, but the a sym-  

met ry  of the flow is greater .  The region of  bot tom flow for R = 500 is 
grea ter  than  for R = 100. 

3. Motion of  f luid in  a sha l low cav i ty  AB = 1, BC = FC = 1, CD = 
= 1 2/3, DE = 3 1/3.  a) R = 100. The flow pat tern  is s imi l a r  to tha t  

ob ta ined  for a square cav i ty .  The core of  the secondary flow is d i sp laced  

in the d i rec t ion  of the mot ion  of the  mov ing  plane.  

g 

Fig. 4. R= 100, kt=2, t = 2 .  

b) R = 500. The  core of  the  secondary flow is d i sp laced  s t i l l  further, 

wh i l e  an add i t iona l  c losed- f low region appears in  the  opposi te  corner. 

The flow rates at  the  wa i l  CD are very  low and the mot ion  approaches 

s tagnat ion  (Fig. 5). 
Hydrodynamica l ly ,  the solutions of  a l l  the  cases e x a m i n e d  exh ib i t  

ce r t a in  common  features.  The secondary flows appear  ear l ie r  ( in terms 
of  d imensionless  t ime)  a t  l a rge  Reynolds numbers.  The dimensionless  

ra te  of  flow along the  l ine  CF decreases wi th  increas ing  Reynolds n u m -  

ber: thus, the m a x i m u m  values  u.  of  the v e l o c i t y  u = ~0/8 .y  on the 

s t ra ight  l ine  connec t ing  the points C and F (for a square cav i ty )  are 

0, 20, 0.17, and 0 . 1 3  for R = 0, 100, and 500, respec t ive ly .  

The  ve toc i ty  va r i a t ion  also exhibi ts  the  same  nature  in  other cases. 

A ~ H 

Fig.  5. R : 5 0 0 ,  k 1 = 2 ,  t = 1 . 5 .  

Ca lcu la t ions  were performed for Z~x = 0, 1, Ay = 0.1;  Ax = 0.1,  
Ay = 0.05;  and Ax = 0.05, Ay = 0.05.  This did not produce a change  

in the  flow pattern,  but  the secondary vor tex in  the  corner  CDE in Fig. 

3 could be  de tec ted  onty  wi th  the a id  of  a f ine grid.  The  t i m e  in te rva l  

At was var ied  in the ca lcu la t ions  to assure s t ab i l i ty  at increas ing  v e l o c i -  

t ies.  The f ina l  cho ice  for a square cav i ty  was 

A t  0 .25. t0  -~- for R : 0 ,  

At = 0 .625. t0  -a for /~ = 100, 

At = 0.625.10 -4 for R = 500. 

The  results i n d i c a t e  that  in using n u m e r i c a l  methods,  i t  is possible 

to revea l  some in teres t ing  features of viscous flows. All  the  ca lcu la t ions  

were performed on a 8ESM-2 computer  at the Computer  Cente r  of  We 

Leningrad Depar tment  of the  M a t h e m a t i c a l  Inst i tute  of  the Academy of 

Sciences,  USSR. 
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